
 
MICROCONTROLLERS   OSCILLATORS/DELAY LINES/TIMERS/COUNTERS   Apr 26, 2004  

Using Timers in the MAXQ Family of Microcontrollers

 
This application note describes how to set up and use the Type 2 Timers in the MAXQ™ 
Family of Microcontrollers for different applications. It includes source code for reference.

 

Introduction
The MAXQ family of microcontrollers has three types of timers: Timer 0, Timer 1, and Timer 2. 

The MAXQ Timer 0 type is modeled after the Timer 0 type common on many 8051 microcontollers. The MAXQ 
Timer 1 type is modeled after the 8051 Timer 2 type. Most MAXQ products have a new timer called Timer 2 that is 
unique to the MAXQ family. This application note details how to set up and use this new Timer 2 for different 
purposes, and includes some source code for reference.

Overview
Functionality
The three main uses of the timer are to generate output waveforms, to count transitions of an input signal (including 
counting system clock transitions thus functioning as a timer), and to time an input signal. This section covers 
methods to use the configuration modes of Timer 2 to perform these timer functions.

Compare 
In this mode, the counter is sourced internally by either the system clock or an alternate clock (typically the 32,768 
Hz RTC clock), either of which may be optionally prescaled by 1, 2, 4, 8, 16, 32, 64, or 128. The counter is then used 
to control the output of the primary and/or secondary timer pins to generate various waveforms.

By changing the values in the reload (T2R) and compare (T2C) registers, the frequency and duty cycle of the output 
waveforms can be modified. In this way, the MAXQ processor can generate a pulse-width modulated (PWM) 
waveform. The outputs can be selectively enabled and the starting polarity can be inverted. The limits on frequency 
and duty cycle are determined by the frequency of the clock selected as source (whether the system or alternate 
clock) and the clock divisor selected. The minimum pulse width is one clock cycle (selected by setting the compare 
and reload values to the same value or by setting the compare value to FFFEh) of the prescaled source clock. The 
maximum pulse width is 65,536 cycles of the prescaled source clock. With a prescale factor of 128, the maximum 
pulse width is 8,388,608 system clock periods - over eight seconds for a 1 MHz system clock. Using the alternate 
clock with a lower frequency can increase this even further.

Compare mode also provides the ability to generate single pulses by use of the single shot (SS2) capability. Single 
shot allows the firmware to set up the length of the pulse before it is triggered, precluding the requirement for 
firmware to time the pulse and determine when it should end. Gating allows the primary pin to trigger a single pulse 
on the secondary output or to turn the counter on and off, allowing a PWM output on the secondary pin to be 
modified by an incoming signal. The compare mode can also be used to generate recurring interrupts on a specific 
schedule.

Capture 
In this mode, the counter is sourced internally but is used to count or time the duration of an input signal on the 
primary timer pin. The counter can be gated and triggered on either or both edges of the input signal, allowing 
flexibility in timing pulses, single events, or reccurring waveforms. The value in the T2C register can be used to 
calculate the period of the measured event. 

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/43/ln/en


Counter 
In this mode, the primary timer pin sources the clock for the counter. In this mode, the counter counts the transitions 
on the primary pin, either the rising or falling edges, or both. The secondary pin can be used to output a waveform, 
which toggles when the count overflows and when the counter matches a specific value. Interrupts can also be 
generated in these two cases.

Dual Eight-Bit Modes
Timer 2 can be operated in sixteen-bit mode (in which case there is just one counter available) or in eight-bit mode, 
which treats the counter as two eight-bit counters, which can be used independently. This allows for three additional 
functions for the timer circuitry. When in eight-bit mode, the primary counter (the high counter) can be in used for 
Compare, Capture, or Counter functions while the secondary counter (the low counter) can be used for compare or 
PWM output.

Dual Compare 
In this mode, each eight-bit counter counts individually and can be used to output a waveform, but each counter is 
sourced from the same internal clock source. Different frequencies and duty cycles of waveforms can be output on 
the two timer pins by using different reload and compare values for each eight-bit counter.

Capture/PWM
In this mode, one eight-bit counter (the high counter) works in capture mode to time the duration of an input signal. 
The other eight-bit counter (the low counter) operates in compare mode and can be used to output a waveform.

Counter/PWM
In this mode, one eight-bit counter (the high counter) works in counter mode to count transitions of an input signal. 
The other eight-bit counter (the low counter) operates in compare mode and can be used to output a waveform.

Options
Single Shot (SS2)

This option allows the counter to run as if the run bit (T2R) had been turned on, but only until the next overflow of the 
counter. The counter then reverts to using the run bit to determine if it will continue counting. When in eight-bit mode, 
this bit applies ONLY to the primary eight-bit counter (high counter).

Gating Enable (G2EN)
This option allows the counter to be turned off (that is, gated) for a period of time without the firmware needing to 
manually toggle the run bit (T2R). In compare and counter mode, gating applies to the source clock. In capture 
mode, gating applies to the reload event. 

The gating is controlled by the value on the primary pin. This requires the primary pin to be an input (T2OE [0]=0), so 
the output waveform (if needed) must be output on the secondary (or B) pin. Gating control is only available on the 
primary input.

Polarity Select
The polarity bits (T2POL [0] and T2POL [1]) can be used to invert the output waveforms. When used for this 
function, they must be set before the respective output enable bits (T2OE [0] and T2OE [1]) are set. Setting the 
polarity bits after the enable bits are set has no effect. The T2POL [0] bit can also be used to invert the gating 
condition on the primary pin when it is not used as an output. The T2POL [0] bit also an additional meaning in 
capture mode when both edges are defined for capture. In this case it defines which edge starts a single shot cycle, 
and inhibits reloading on one edge if gating is enabled.

Output Enable 
The output enable bits (T2OE [0] and T2OE [1]) determine if the primary and secondary pins are actively driven by 



the timer circuitry. When the output enable bits are turned off, these pins can be read as inputs using the respective 
Port Input register. When the primary pin is not enabled for output, it can be used to gate (turn off) the counter.

Clock selection
The T2CI bit (alternate clock select) and T2DIV [2:0] bits (clock divisor) are used to set the clock source and 
prescale factor used by the counter. T2CI is used to select between the system clock and the alternate clock. Either 
of these can then be prescaled by a factor of 2n (n is the value from 0 to 7 that is stored in T2DIV).

Using the Timer
The Counter Registers
The counter has three registers associated with it in sixteen-bit mode and three additional registers when in eight-bit 
mode. These registers can be read and written in either mode (eight- or sixteen-bit), but the low registers behave 
differently when in eight-bit mode. When operating in sixteen-bit mode, T2V, T2R and T2C serve as the sixteen-bit 
counter, reload and compare registers, respectively. When operating in eight-bit mode, these three registers serve 
as the low-order eight-bit registers. The high-order registers are represented by the T2H, T2RH and T2CH for the 
counter, reload and compare registers, respectively. Additionally, these registers take on the role of the primary 
counter, with the T2V, T2R and T2C registers assuming a secondary role.

This means that any code that uses the timer registers will operate significantly differently when the timer is in eight-
bit mode versus sixteen-bit mode. Therefore it is recommended that you use either eight-bit mode or sixteen-bit 
mode exclusively for a particular timer. If you need to use it in both modes at different times, using separate 
functions for each mode will cause less confusion for the programmer.

In sixteen-bit mode, the T2V register contains the current count. This register is incremented with the selected clock 
edge(s) when either the run bit (TR2) or the single shot bit (SS2) are turned on and gating is not active (G2EN=0). If 
gating is active (G2EN=1) then in addition to either TR2 or SS2 being on, the input on the primary pin must be of 
opposite polarity to the primary polarity bit (T2POL [0]) for the counter to increment.

The T2R register holds the reload value for the counter. This value is automatically inserted into the counter (T2V) 
whenever it overflows (has reached FFFFh and is due to increment again).

Control and Configuration Registers
There are three control and configuration registers: T2CFG, T2CNA, and T2CNB. T2CFG contains general 
configuration information.

The C/T2 bit (counter/timer select) selects whether the timer will function in counter mode or timer mode (capture, 
compare, and capture with compare output are sub-modes of the timer mode). In timer mode, the CCF [1:0] bits 
(capture/compare select) determine if the timer is in compare mode (CCF [1:0] = 00) or capture mode (CCF [1:0] = 
01, 10, or 11). In counter mode, the CCF bits determine which edges - falling, rising, or both - will be counted. In 
counter mode, a value of 00 in the CCF bits is not used since the counter would have nothing to count. The mode 
select bit (T2MD) determines if the timer will operate as one sixteen-bit timer or two separate eight-bit timers. When 
set, two eight-bit timers are selected. The secondary timer is always a compare/PWM timer.

The system clock or the alternate clock (32 kHz RTC clock in some MAXQ implementations) can be selected as the 
source clock, and each of these can be prescaled as necessary. The alternate clock select bit (T2CI) defaults to 0, 
which selects the system clock. Setting this bit selects the alternate clock.



The prescaler bits (T2DIV [2:0]) select the clock divisor, which ranges from 1 to 128. The formula for the prescaler is 
2n, where n is the value in T2DIV [2:0].

T2CNA contains gating enable, single shot, reload enable, run enable, low run enable, primary output polarity, 
primary output enable, and interrupt enable bits.

The gating enable bit (G2EN) allows the counter to be selectively disabled. The single shot bit (SS2) allows the timer 
to run until the next overflow condition, at which point the timer halts.

The capture and reload bit (CPRL2) instructs the timer to capture its value into its capture register and reload the 
value from the reload register on an external edge. CPRL2 is not used in the compare and counter modes.

The run enable bit (TR2) allows the primary counter to run and the low run enable bit (TR2L) allows the secondary 
counter to run when in eight-bit mode.

The primary polarity select bit (T2POL0) selects the initial polarity of the primary output. Changing this bit after the 
output has been enabled via T2OE0 has no effect. Setting the primary output enable bit (T2OE0) turns on the output 
for the primary pin and sets its value equal to the value in the polarity bit (T2POL0).

Setting the primary interrupt enable (ET2) allows interrupts to be generated provided that they are enabled for the 
timer's module (set the appropriate bit in the IMR register) and global interrupts have been enabled (IC register bit 0 
set to 1). Interrupts are generated when the primary counter overflows (reaches FFFFh) or matches the compare 
register. In these cases the appropriate bit (TF2 for overflow or TCC2 for a compare) will be set and should be reset 
by firmware in the interrupt handler. Failing to reset these bits will cause repeated interrupts until they are reset or 
the interrupt has been disabled.

T2CNB contains compare and overflow flags, the secondary interrupt enable, and the secondary output polarity and 
enable bits.

The capture/compare flag (TCC2) is set when the primary counter value matches the compare value.

The low capture/compare flag (TC2L) is similar to TCC2, but is set only when in eight-bit mode and the low or 
secondary counter matches the low compare value.

The overflow flag (TF2) is set when the primary counter overflows. The low overflow flag (TF2L) is similar to TF2, but 
is set only when in eight-bit mode and the low or secondary counter overflows. The secondary polarity select bit 
(T2POL1) selects the initial polarity of the secondary or B output pin. Changing this bit after the output has been 
enabled via T2OE1 has no effect. Setting the secondary output enable bit (T2OE1) turns on the output for the 
secondary pin and sets its value equal to the value in the polarity bit (T2POL1). The secondary output is not directly 
linked to the secondary counter, since in sixteen-bit mode the primary counter sources it but in eight-bit mode the 
low counter sources it.



Setting the secondary interrupt enable (ET2L) allows interrupts to be generated when the TF2L or TC2L bits are set 
by an overflow (TF2L) or compare (TC2L) of the secondary or low eight-bit counter when in eight-bit mode. The 
ET2L bit is not used in sixteen-bit mode.

Examples
Compare Example 1 - Output a waveform with gating
The following code will output a signal with a frequency of 100 Hz and a duty cycle of 1/3. The code was written for a 
clock speed of 4.9152 MHz. The reload value of 4000h (16384 decimal) provides C000h (49152 decimal) clock 
cycles between the reload and the overflow and subsequent reload for a period of 10 ms (100 Hz). The compare 
value of C000 gives us 32768 clock cycles (C000h - 4000h) or 6.7 ms after the reload that the compare (and 
consequently, the pulse edge) will occur.

The T2POL1 bit sets the initial value since we are using the secondary output, the primary being used for gating. 
The T2POL0 bit selects the gating level in this case. With T2POL1 set to 0, the initial value of the output is 0, so the 
output is low for 6.7 milliseconds followed by high for 3.3 milliseconds. The 1/3 duty cycle waveform will be output as 
long as the primary pin is held high. When the primary pin is pulled low the counter will stop counting and will hold 
the secondary pin at the current level. The waveform can be inverted (making a 2/3 duty cycle pulse) by setting 
T2POL1 to 1. The gating level can be changed to active high by setting T2POL0 to 1.

move    T2V0, #04000h ; set to reload value to keep first pulse
  ; from being extra long
        move    T2R0, #04000h ; reload value
        move    T2C0, #0C000h ; compare value

        move    T2CFG0, #000h ;
; 0000,0000 - use system clock (0), divide by 1 (000),
;       16 bit mode (0), compare mode (00), c/t2=timer (0)

move    T2CNB0, #040h
; 0100,0000 - ET2L off - low interrupts not available in 16-bit mode (0),
;       secondary OE is on (1), POL1 = low starting value (0), reserved (0)
;       TF2 is not used (0), TF2L is not used (0), TCC2 is not used (0),
;       TC2L is not used (0)

move    T2CNA0, #009h
; 0000,1001 - ET2 off - interrupts not needed (0),
;       primary OE off as primary pin is used for gating (0),
;       POL0 low, gated when primary pin is low (0), TR2L is not needed (0)
;       TR2 on, run enabled (1), CPRL2 is not needed (0),
;       SS2 is not needed (0), gating enabled (1)

Compare Example 2 - Single shot pulse
The following code was written for a MAXQ2000 part, which has 3 separate Timer 2s. It uses the third timer, which is 
in module 4. It is also written for a system clock frequency of 4.9152 MHz and will output a low pulse with a width of 
two milliseconds when triggered, with the output normally being high. At the end of the pulse an interrupt will be 
generated to indicate that the pulse has finished. This code uses the timer in eight-bit mode and also demonstrates 
use of the prescaler. 

To obtain the desired two millisecond period, a prescale value of 64 and a timer period of 154 prescaled clocks 
(4915200 / 64 * 0.002 = 153.6) are used. Selecting a compare value of 66h (100h - 9Ah) gives us 9Ah (154 decimal) 
ticks before the counter overflows from FFh to 00. Setting the reload value to 65h causes the pulse to start 1 tick 
after we set the SS2 (single shot) bit.

SetupPulse:



 

        ; This code sets up the timer and should be run once
        ; set up Int handler
        move    IV, #IntHandler     ; Set interrupt vector.
        move    IC.0, #1            ; Enable global interrupts.
        move    IMR.4, #1           ; Enable interrupts for module 3.
        ; timer 0 is in module 3, timer 1 & 2 are in module 4

        move    T2CFG2, #068h ;
; 0110,1000 -- use system clock (0), divide by 64 (110),
;       8 bit mode (1), compare mode (00), c/t2=timer (0)

        move    T2CNB2, #000h
; 0000,0000 -- ET2L off, low interrupts not needed (0), secondary OE off (0),
;       T2POL1 = not used (0), reserved(0)
;       TF2 is generated by the timer (0), TF2L is not used (0), TCC2 is not used (0),
;       TC2L is not used (0)

        move    T2CNA2, #0E0h
; 1110,0000 -- ET2 on, interrupt will be generated (1), primary OE on (1),
;       T2POL0 is high (1), TR2L is not needed (0)
;       TR2 off, run not enabled (0), CPRL2 is not needed (0), SS2 is set later (0),
;       gating disabled (0)

        move    T2H2, #065h ; set to reload value
        move    T2RH2, #065h ;
        move    T2CH2, #066h ; 0x100 - 0x66(compare value) = 0x9A = 154 ticks

The following code should be called whenever the pulse is to be triggered.

TriggerPulse:
        move T2CNA2.1, #1 ; set the single shot bit to start the timer
ret
The following is a piece of the interrupt code.
IntHandler:
move c, T2CNB2.3
jump nc, NonTimerInt
move T2CNB2.3, #0 ; turn off overflow bit so interrupt is serviced
; code for end of pulse here...

NonTimerInt:
        ; other interrupt code here.

reti

Compare Example 3 - Timed interrupts
The following code will generate two interrupts, one every 125 microseconds and a second one every millisecond. It 
uses one timer split into two eight-bit timers. Since both eight-bit timers will be running from the same input clock, we 
want to pick a clock divisor that will allow both timers to have a count of less than 256 (the maximum for a eight-bit 
counter). Using the alternate clock as source provides us with a way to get both timings without needing to divide 
down the system clock, at the cost of some accuracy: the actual timing is closer to 122 microseconds for the high 
counter and 0.98 milliseconds for the low counter since the alternate clock runs at 32768 Hz and no even divisor for 
the required periods is available. We will get 1024 interrupts per second from the low counter and 8192 interrupts 
per second from the high counter. Both high and low interrupts are enabled and the type of interrupt is identified by 
the TF2 and TF2L bits which must be cleared to service the interrupt.



; This code sets up the timer and should be run once
        ; set up Int handler
        move    IV, #IntHandler     ; Set interrupt vector.
        move    IC.0, #1            ; Enable global interrupts.
        move    IMR.3, #1           ; Enable interrupts for module 3.
        ; timer 0 is in module 3

        move    T2CFG0, #088h ;
; 1000,1000 -- use 32 kHz clock (1), divide by 1 (000),
;       8 bit mode (1), compare mode (00), c/t2=timer (0)

        move    T2CNB0, #080h
; 1000,0000 -- ET2L on, low interrupt will be generated (1), secondary OE off (0),
;       T2POL1 = not used (0), reserved(0)
;       TF2 is generated by the timer (0), TF2L is generated by timer (0),
;       TCC2 is not used (0), TC2L is not used (0)

        move    T2CNA0, #080h
; 1000,0000 -- ET2 on, interrupt will be generated (1), primary OE off (0),
;       T2POL0 is not needed (0), TR2L off, will be set later (0)
;       TR2 off, will be set later (0), CPRL2 is not needed (0),
;       SS2 is not needed (0), gating disabled (0)

        move    T2H0, #0FCh ; set to reload value to keep first pulse from being extra 
long
        move    T2RH0, #0FCh ; reload value (0x100 - 0xFC = 4 ticks)
        move    T2CH0, #000h ;

        move    T2V0, #0E0h ; set to reload value to keep first pulse from being extra 
long
        move    T2R0, #0E0h ; reload value (0x100 - 0xE0 = 32 ticks)
        move    T2C0, #000h ;

        move    ACC, T2CNA0 ; turn on high run and low run (TR2, TR2L)
        or      #018h ;
        move    T2CNA0, ACC

The following is part of the interrupt handler code:

IntHandler:
        move c, T2CNB0.3
        jump nc, No8KHz
        ; code for 8KHz interrupt here
        move T2CNB0.3, #0

No8KHz:
        move c, T2CNB0.2
        jump nc, No1KHz
        ; code for 1KHz interrupt here
        move T2CNB0.2, #0

No1KHz:
        ; other interrupt code here



reti

Capture Example - Time an incoming waveform
This example times an incoming signal. This code uses the second timer (they are numbered 0,1, and 2) and is set 
up to time the duration of a high pulse. It does not start timing until a rising edge is seen. The CPRL2 bit enables a 
reload upon capture so that subsequent pulses can also be timed. The T2POL [0] and SS2 bits have slightly 
different meanings in this mode. The SS2 bit (single shot) is used to inhibit counting until the beginning edge is 
detected. This enables the timer to be set up at any time, even when the input is currently high since the timer will 
not start until the next rising edge. The T2POL [0] bit selects the gating level instead of the output polarity as in the 
previous examples. A gating level of 0 prevents the counter from running while the input is low. This example is 
geared for longer pulses and divides the system clock by 128. With a system clock frequency of 4.9152 MHz, the 
timer has a resolution of approximately 26 microseconds, and can count to 1.7 seconds before overflowing.

The following code sets up the capture.

; set up Int handler
        move    IV, #IntHandler         ; Set interrupt vector.
      move    IC.0, #1                ; Enable global interrupts.
      move    IMR.4, #1               ; Enable interrupts for module 3.
        ; timer 0 is in module 3, timer 1 & 2 are in module 4

        ; repeated capture of high pulse
        move T2CFG1, #074h ;
; 0111,0100 -- use system clock (0), divide by 128 (111),
;       16 bit mode (0), capture on falling edge (10), c/t2=timer (0)

        move T2CNA1, #08Fh ;
; 1000,1111 -- ET2 on, interrupt will be generated (1), primary OE off (0),
;       T2POL0 (gating) at low (0), TR2L off, will be set later (0)
;       TR2 on (1), CPRL2 (reload on capture) is on (1),
;       SS2 on (1), gating enabled (1)

        move    T2CNB1, #000h
; 0000,0000 -- ET2L off, low interrupt not used (0), secondary OE off (0),
;       T2POL1 = not used (0), reserved(0)
;       TF2 is generated by the timer (0), TF2L is not used (0),
;       TCC2 is not used (0), TC2L is not used (0)

The following is part of the interrupt handler code:

IntHandler:
        ; looking for Timer2 interrupt...

move c, T2CNB1.1 ; capture/reload flag
jump nc, NoCapture
move T2CNB1.1, #0
; put code for capture event here
move ACC, T2C1 ; capture value now in ACC

NoCapture:
move c, T2CNB1.3 ; overflow flag
jump nc, NoOverflow
        move T2CNB1.3, #0 ;
        ; put code to deal with overflow here



        ; pulse was too long to measure with current clock speed and divisor
        ; can add 65536 to a 32-bit value to keep counting

NoOverflow:
        ; put other interrupt code here

reti

Counter Example - Count incoming transitions with interrupt and output waveform
The following example counts incoming pulses on the primary pin and generates an interrupt after every eight 
pulses. It also controls an output waveform on the secondary pin, which is toggled once every eight input pulses.

        ; This code sets up the timer and should be run once
        ; set up Int handler
        move    IV, #IntHandler     ; Set interrupt vector.
      move    IC.0, #1            ; Enable global interrupts.
      move    IMR.3, #1           ; Enable interrupts for module 3.
        ; timer 0 is in module 3

        move    T2V0, #0FFF8h ; set to reload value
        move    T2R0, #0FFF8h ; reload value 0x10000 - 0x0ffff = 8 ticks
        move    T2C0, #00000h ;

        move    T2CFG0, #003h ;
; 0000,0011 -- use system clock (0), divide by 1 (000),
;       16-bit mode (0), rising edge (01), c/t2=counter (1)

        move    T2CNB0, #060h
; 0110,0000 -- ET2L not used (0), secondary OE on (1),
;       T2POL1 start at high (1), reserved(0)
;       TF2 is generated by the timer (0), TF2L is not used (0),
;       TCC2 is generated by the timer (0), TC2L is not used (0)

        move    T2CNA0, #088h
; 1000,1000 -- ET2 on, interrupt will be generated (1), primary OE not used (0),
;       T2POL0 is not used (0), TR2L is not needed(0)
;       TR2 on (1), CPRL2 is not needed (0),
;       SS2 is not needed (0), gating disabled (0)

The following is part of the interrupt handler

IntHandler:

        move c, T2CNB0.3
        jump nc, NoTimer
        move T2CNB0.3, #0 ; service interrupt
        ; put code for every 8 pulses here

NoTimer:
        ; other interrupt code here

reti

Some Common Pitfalls to Avoid
When in compare mode, if the compare and reload values are equal a second transition on the output occurs one 



clock cycle after a reload occurs. While this is a valid option when you want a pulse width of just one clock cycle, it's 
easy to let this happen without intending it since they both default to the same value of 0. If the compare value is not 
to be used it should be set outside of the range used by the timer. Normally setting the compare value to something 
less than the reload value will do this. If this is not possible (due to using a reload value of 0) then the compare value 
should be set to FFFFh in sixteen-bit mode or FFh in eight-bit mode. This causes the compare and overflow events 
to happen on the same timer clock cycle preventing the second transition of the output.

Output enables should be turned on before or at the same time as the run enable. Setting the run enable before the 
output enable can cause the output to be inverted since it is possible for interrupts to cause the code to be 
suspended (while the interrupt is serviced) in between the time the timer is set to run and when the output enable is 
asserted. This can cause a compare or overflow event to happen before the output is enabled, which causes the 
output to be of the opposite polarity. This usually happens with the B or secondary output since the output enable 
(T2OE1) is in the T2CNB register while the run bit (TR2) and low run bit (TR2L) are in the T2CNA register. In this 
case the T2CNB register should be set up first or the T2CNA register should be set up with the run bits set to zero 
and then set the run bits after all registers have been configured.

Appendix: Table of bit settings for various modes 

MODE T2MD C/T2 CCF[1:0] T2OE[0] T2OE[1] T2POL[0] T2POL[1] G2EN SS2 CPRL2

16 bit 
compare 
with 
optional 
gating

0 0 00

0 = 
primary 
output 
not 
enabled

0 = 
secondary 
output not 
enabled
1 = 
secondary 
output 
enabled

Defines 
gating 
level
0 = low
1 = high

Defines 
initial 
polarity of 
secondary 
output
0 = low
1 = high

0 = no 
gating
1 = 
gating 
enabled 
on 
primary 
pin

1 = 
Single 
shot
0 = use 
TR2 for 
run

0
Not 
used

16 bit 
compare 
with 
primary 
output 
enabled 
(no 
gating 
available)

0 0 00

1 = 
primary 
output 
enabled

0 = 
secondary 
output not 
enabled
1 = 
secondary 
output 
enabled

Defines 
initial 
polarity of 
primary 
output
0 = low
1 = high

Defines 
initial 
polarity of 
secondary 
output
0 = low
1 = high

0
Not 
usable 
with 
primary 
output 
enabled

1 = 
Single 
shot
0 = use 
TR2 for 
run

0
Not 
used

16 bit 
capture 
Capture 
on one 
edge 
only

0 0

01 = 
Capture 
on rising 
edge
10 = 
Capture 
on falling 
edge

0
Not used

0
Not used

Gating 
level on 
primary 
pin
0 = low
1 = high

0
Not used

1 = 
Gating 
enabled
0 = 
Gating 
disabled

1 = 
Single 
shot
0 = use 
TR2 for 
run

Capture 
and 
reload
0 = off
1 = on

16 bit 
capture 
Capture 
on both 
edges, 
no reload

0 0

11 = 
Capture 
on both 
eges

0
Not used

0
Not used

Gating 
level on 
primary 
pin
0 = low
1 = high

0
Not used

1 = 
Gating 
enabled
0 = 
Gating 
disabled

1 = 
Single 
shot
0 = use 
TR2 for 
run

0 = 
Capture 
and 
reload 
off



16 bit 
capture 
Capture 
on both 
edges, 
reload on 
both

0 0

11 = 
Capture 
on both 
edges

0
Not used

0
Not used

Start/stop 
edge
0 = 
start/stop 
on rising
1 = 
start/stop 
on falling

0
Not used

0 = 
reload on 
all edges

1 = 
Single 
shot 
T2POL[0] 
defines 
start/stop 
edge
0 = use 
TR2 for 
run

1 = 
Capture 
and 
reload 
on

16 bit 
capture 
Capture 
on both 
edges, 
reload on 
one edge

0 0

11 = 
Capture 
on both 
edges

0
Not used

0
Not used

Non reload 
edge and 
start/stop 
edge
0 = falling 
(start/stop 
on rising)
1 = rising 
(start/stop 
on falling)

0
Not used

1 = 
reload on 
one edge 
only 
T2POL[0] 
defines 
capture 
only 
edge

1 = 
Single 
shot 
T2POL[0] 
defines 
start/stop 
edge
0 = use 
TR2 for 
run

1 = 
Capture 
and 
reload 
on

16 bit 
counter

0 1

01 = rising
10 = 
falling
11 = both
00 = none 
(Not 
Used)

0 Not 
used
Primary 
pin is 
input 
only

0 = 
secondary 
output not 
enabled
1 = 
secondary 
output 
enabled

0 Not used
Primary 
pin is input 
only

Defines 
initial 
polarity of 
secondary 
output
0 = low
1 = high

0 Not 
used
Do not 
set to 1

0 Not 
used
Do not 
set to 1

0 Not 
used

Dual 8 bit 
compare 
with 
gating

1 0 00

0 = 
primary 
output 
not 
enabled

Secondary 
counter 
output 
enable
0 = not 
enabled
1 = output 
enabled

Defines 
gating 
level
0 = low
1 = high

Defines 
initial 
polarity of 
secondary 
counter 
outpu
0 = low
1 = high

0 = no 
gating
1 = 
gating 
enabled 
on 
primary 
pin

0 Not 
used

0 Not 
used

Dual 8 bit 
compare 
with no 
gating

1 0 00

1 = 
primary 
output 
enabled

Secondary 
counter 
output 
enable
0 = not 
enabled
1 = output 
enabled

Defines 
initial 
polarity of 
primary 
output
0 = low
1 = high

Defines 
initial 
polarity of 
secondary 
counter 
output
0 = low
1 = high

0 Not 
usable 
with 
primary 
output 
enabled

1 = 
Single 
shot
0 = use 
TR2
Only 
applies to 
primary 
counter

0 Not 
used



8 bit 
capture + 
8 bit 
compare

1 0

01, 10, 11
The 
primary 
counter 
acts just 
as in 16 
bit mode 
(except 
with only 
8 bit 
resolution)

See 16 
bit 
capture 
modes

Secondary 
counter 
output 
enable
0 = not 
enabled
1 = output 
enabled

See 16 bit 
capture 
modes

Defines 
initial 
polarity of 
secondary 
counter 
output
0 = low
1 = high

See 16 
bit 
capture 
modes

See 16 
bit 
capture 
modes

See 16 
bit 
capture 
modes

8 bit 
counter + 
8 bit 
compare

1 1

01 = rising
10 = 
falling
11 = both
00 = none 
(Not 
Used)

0 Not 
used
Primary 
pin is 
input 
only

Secondary 
counter 
output 
enable
0 = not 
enabled
1 = output 
enabled

0 Not used
Primary 
pin is input 
only

Defines 
initial 
polarity of 
secondary 
counter 
output
0 = low
1 = high

0 Not 
used
Do not 
set to 1

0 Not 
used
Do not 
set to 1

0 Not 
used

MAXQ is a trademark of Maxim Integrated Products, Inc.

More Information

MAXQ2000: QuickView -- Full (PDF) Data Sheet -- Free Samples

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4466/ln/en
http://pdfserv.maxim-ic.com/en/ds/MAXQ2000.pdf
http://www.maxim-ic.com/samplescart.cfm?Action=Add&PartNo=MAXQ2000&ln=en

